SQLite format 3@ .  ? ^ B 8Ed\%/sindexnumber_indexnumber_key_valuesCREATE INDEX number_index ON number_key_values(key)T!+kindextext_indextext_key_valuesCREATE INDEX text_index ON text_key_values(key)<Sindexkey_indexkeysCREATE INDEX key_index ON keys(key)H ']indexspecies_indexspeciesCREATE INDEX species_index ON species(Z)W -uindexcalculator_indexsystems CREATE INDEX calculator_index ON systems(calculator)Q )mindexusername_indexsystems CREATE INDEX username_index ON systems(username)H #aindexctime_indexsystems CREATE INDEX ctime_index ON systems(ctime)T +qindexunique_id_indexsystems CREATE INDEX unique_id_index ON systems(unique_id)[##tableinformationinformation CREATE TABLE information ( name TEXT, value TEXT)*//tablenumber_key_valuesnumber_key_valuesCREATE TABLE number_key_values ( key TEXT, value REAL, id INTEGER, FOREIGN KEY (id) REFERENCES systems(id))$++tabletext_key_valuestext_key_valuesCREATE TABLE text_key_values ( key TEXT, value TEXT, id INTEGER, FOREIGN KEY (id) REFERENCES systems(id))sItablekeyskeysCREATE TABLE keys ( key TEXT, id INTEGER, FOREIGN KEY (id) REFERENCES systems(id)) otablespeciesspeciesCREATE TABLE species ( Z INTEGER, n INTEGER, id INTEGER, FOREIGN KEY (id) REFERENCES systems(id))P++Ytablesqlite_sequencesqlite_sequenceCREATE TABLE sqlite_sequence(name,seq)etablesystemssystemsCREATE TABLE systems ( id INTEGER PRIMARY KEY AUTOINCREMENT, -- ID's, timestamps and user name unique_id TEXT UNIQUE, ctime REAL, mtime REAL, username TEXT, numbers BLOB, -- stuff that defines an Atoms object positions BLOB, cell BLOB, pbc INTEGER, initial_magmoms BLOB, initial_charges BLOB, masses BLOB, tags BLOB, momenta BLOB, constraints TEXT, -- constraints and calculator calculator TEXT, calculator_parameters TEXT, energy REAL, -- calculated properties free_energy REAL, forces BLOB, stress BLOB, dipole BLOB, magmoms BLOB, magmom REAL, charges BLOB, key_value_pairs TEXT, -- key-value pairs and data as json data BLOB, natoms INTEGER, -- stuff for making queries faster fmax REAL, smax REAL, volume REAL, mass REAL, charge REAL)-Aindexsqlite_autoindex_systems_1systems #mH$M7eb55b93620057c199bf69aaf580c616$M595d4c13b40505314ed4d66471c18ede$M300141b0449449af0b566fa3f6b40fb8$M60a978082364e2a3881d78c2d8135e32$M5b9ec0af3c1903a2daf5fb3877a2bae5$M9b00394556c76fd7950050ca57892315$M235979d05f8d430e2e5a7d26d20ed3b1#M 33e76b44fbbb19b265a4458a691630a6  systems zz6    6   6   6 6 66  6  vi\OB5( zi[M?1# t e V K ? 3 (  { m ^ O @ 1 "   | n ` R D 6 (  v g X M A 5 *  } o ` Q B 3 $  qbSD5&{k_RE9*qaQA1!qbSD5&wgWG7' Yno_equ_31 Xno_equ_30 Wno_equ_29 Vno_equ_28 Uno_equ_27 Tno_equ_26 Sno_equ_25 Rno_equ_24 Qno_equ_23 Pno_equ_22 Ono_equ_21 Nno_equ_20 Mno_equ_19 Lno_equ_18 Kno_equ_17 Jno_equ_16 Ino_equ_15 Hno_equ_14 Gno_equ_13 Fno_equ_12 Eno_equ_11 Dno_equ_10 Cno_equ_9 Bno_equ_8 Ano_equ_7 @no_equ_6 ?no_equ_5 >no_equ_4 =no_equ_3 <no_equ_2 ;no_equ_1 :ads_site9#plane_index8!Dipole_val 7distance 6ads_E 5atom_E 4slab_E 3str_E 2no_equ_15 1no_equ_14 0no_equ_13 /no_equ_12 .no_equ_11 -no_equ_10 ,no_equ_9 +no_equ_8 *no_equ_7 )no_equ_6 (no_equ_5 'no_equ_4 &no_equ_3 %no_equ_2 $no_equ_1 #ads_site"#plane_index!!Dipole_val distance ads_E atom_E slab_E str_E no_equ_16 no_equ_15 no_equ_14 no_equ_13 no_equ_12 no_equ_11 no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1 ads_site #plane_index !Dipole_val distance ads_E atom_E slab_E str_E no_equ_19 no_equ_18 no_equ_17 no_equ_16 no_equ_15 ~no_equ_14 }no_equ_13 |no_equ_12 {no_equ_11 zno_equ_10 yno_equ_9 xno_equ_8 wno_equ_7 vno_equ_6 uno_equ_5 tno_equ_4 sno_equ_3 rno_equ_2 qno_equ_1 pads_siteo#plane_indexn!Dipole_val mdistance lads_E katom_E jslab_E istr_E hno_equ_21 gno_equ_20 fno_equ_19 eno_equ_18 dno_equ_17 cno_equ_16 bno_equ_15 ano_equ_14 `no_equ_13 _no_equ_12 ^no_equ_11 ]no_equ_10 \no_equ_9 [no_equ_8 Zno_equ_7 Yno_equ_6 Xno_equ_5 Wno_equ_4 Vno_equ_3 Uno_equ_2 Tno_equ_1 Sads_siteR#plane_indexQ!Dipole_val Pdistance Oads_E Natom_E Mslab_E Lstr_E Kno_equ_17 Jno_equ_16 Ino_equ_15 Hno_equ_14 Gno_equ_13 Fno_equ_12 Eno_equ_11 Dno_equ_10 Cno_equ_9 Bno_equ_8 Ano_equ_7 @no_equ_6 ?no_equ_5 >no_equ_4 =no_equ_3 <no_equ_2 ;no_equ_1 :ads_site9#plane_index8!Dipole_val 7distance 6ads_E 5atom_E 4slab_E 3str_E 2no_equ_18 1no_equ_17 0no_equ_16 /no_equ_15 .no_equ_14 -no_equ_13 ,no_equ_12 +no_equ_11 *no_equ_10 )no_equ_9 (no_equ_8 'no_equ_7 &no_equ_6 %no_equ_5 $no_equ_4 #no_equ_3 "no_equ_2 !no_equ_1 ads_site#plane_index!Dipole_val distance ads_E atom_E slab_E str_E  no_equ_16  no_equ_15  no_equ_14  no_equ_13  no_equ_12  no_equ_11  no_equ_10  no_equ_9  no_equ_8  no_equ_7  no_equ_6  no_equ_5  no_equ_4  no_equ_3  no_equ_2  no_equ_1  ads_site# plane_index ! Dipole_val  distance ads_E  atom_E  slab_E str_Ev; 8 _r^I4  t[H4 u a J 1  u ` K 7  r _8#plane_indexd7!Dipole_valϲZ6distance@05ads_E?U@4atom_E3slab_Egϕ2str_EgKC1#plane_indexd0!Dipole_val?\90/distance?ͩ>!.ads_E 76-atom_E,slab_Egϕ+str_Ehh'(*#plane_indexd)!Dipole_val?>˳(distance?$9,A'ads_Ek*E&atom_E:W%slab_Egϕ$str_EhR-###plane_indexd"!Dipole_val?Цv !distance?ك+ a ads_EeNJmatom_Eܤ$slab_Egϕstr_Eh~|#plane_indexd!Dipole_val?ۗ"5distance?Лl3/ads_EkQatom_ENp[Islab_Egϕstr_Eh.#plane_indexd!Dipole_val?(distance?%iads_EX|satom_EQ%lK,slab_Egϕstr_Eh6&,s#plane_indexd !Dipole_val lr distance?1&x ads_Ey  atom_E0V slab_Egϕstr_Eh2 # plane_indexd! Dipole_val` distance?+  ads_EƎE atom_E ' slab_Egϕ str_Eh#^J82  version9 #mH$M7eb55b93620057c199bf69aaf580c616$M595d4c13b40505314ed4d66471c18ede$M300141b0449449af0b566fa3f6b40fb8$M60a978082364e2a3881d78c2d8135e32$M5b9ec0af3c1903a2daf5fb3877a2bae5$M9b00394556c76fd7950050ca57892315$M235979d05f8d430e2e5a7d26d20ed3b1#M 33e76b44fbbb19b265a4458a691630a6  @7łC  @7ł? @7ł; @7ł7 @7ł3mb @7ł. @7ł*V.  @7ł&@ hecchecchecchecchecchecchecc hecc vaspvaspvaspvaspvaspvaspvasp vasp         y + c` G  ~d  FA Q  : r pW  9v3 C I } 5 : o ' + a   S  x E }i 7 nZ  ) _K q P< A-J ,h%  w= Zyj0 L ]# >P x 0C k t"6 ^ f) Q Xq  SO \  * g  6no_equ_31no_equ_30no_equ_29no_equ_28no_equ_27no_equ_26no_equ_25no_equ_24no_equ_23no_equ_22no_equ_21no_equ_20no_equ_19no_equ_18no_equ_17no_equ_16no_equ_15no_equ_14no_equ_13no_equ_12no_equ_11no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1 ads_site#plane_index!Dipole_val distance ads_E atom_E slab_E str_Eno_equ_15no_equ_14no_equ_13no_equ_12no_equ_11no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1 ads_site#plane_index!Dipole_val distance ads_E atom_E slab_E str_Eno_equ_16no_equ_15no_equ_14no_equ_13no_equ_12no_equ_11no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1 ads_site#plane_index!Dipole_val distance ads_E atom_E slab_E str_Eno_equ_19no_equ_18no_equ_17no_equ_16 no_equ_15 no_equ_14~ no_equ_13} no_equ_12| no_equ_11{ no_equ_10z no_equ_9y no_equ_8x no_equ_7w no_equ_6v no_equ_5u no_equ_4t no_equ_3s no_equ_2r no_equ_1q ads_sitep#plane_indexo!Dipole_valn distancem ads_El atom_Ek slab_Ej str_Ei no_equ_21h no_equ_20g no_equ_19f no_equ_18e no_equ_17d no_equ_16c no_equ_15b no_equ_14a no_equ_13` no_equ_12_ no_equ_11^ no_equ_10] no_equ_9\ no_equ_8[ no_equ_7Z no_equ_6Y no_equ_5X no_equ_4W no_equ_3V no_equ_2U no_equ_1T ads_siteS#plane_indexR!Dipole_valQ distanceP ads_EO atom_EN slab_EM str_EL no_equ_17K no_equ_16J no_equ_15I no_equ_14H no_equ_13G no_equ_12F no_equ_11E no_equ_10D no_equ_9C no_equ_8B no_equ_7A no_equ_6@ no_equ_5? no_equ_4> no_equ_3= no_equ_2< no_equ_1; ads_site:#plane_index9!Dipole_val8 distance7 ads_E6 atom_E5 slab_E4 str_E3 no_equ_182 no_equ_171 no_equ_160 no_equ_15/ no_equ_14. no_equ_13- no_equ_12, no_equ_11+ no_equ_10* no_equ_9) no_equ_8( no_equ_7' no_equ_6& no_equ_5% no_equ_4$ no_equ_3# no_equ_2" no_equ_1! ads_site #plane_index!Dipole_val distance ads_E atom_E slab_E str_E no_equ_16 no_equ_15 no_equ_14 no_equ_13 no_equ_12 no_equ_11 no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1 ads_site#plane_index!Dipole_val distance ads_E atom_E slab_E str_E a   )  q q c c  c U qUq q  U G c~Gc c q G 9 Uo9U U c 9 + F`+G G U +  7Q9 9 G  B+ + 9 3 + $      pa     ~   q no_equ_31no_equ_30no_equ_29no_equ_28no_equ_27no_equ_26no_equ_25no_equ_24no_equ_23no_equ_22no_equ_21no_equ_20no_equ_19no_equ_18no_equ_17no_equ_16no_equ_15no_equ_14no_equ_13no_equ_12no_equ_11no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1 ads_siteno_equ_15no_equ_14 no_equ_13 no_equ_12~ no_equ_11} no_equ_10| no_equ_9{ no_equ_8z no_equ_7y no_equ_6x no_equ_5w no_equ_4v no_equ_3u no_equ_2t no_equ_1s ads_siter no_equ_16q no_equ_15p no_equ_14o no_equ_13n no_equ_12m no_equ_11l no_equ_10k no_equ_9j no_equ_8i no_equ_7h no_equ_6g no_equ_5f no_equ_4e no_equ_3d no_equ_2c no_equ_1b ads_sitea no_equ_19` no_equ_18_ no_equ_17^ no_equ_16] no_equ_15\ no_equ_14[ no_equ_13Z no_equ_12Y no_equ_11X no_equ_10W no_equ_9V no_equ_8U no_equ_7T no_equ_6S no_equ_5R no_equ_4Q no_equ_3P no_equ_2O no_equ_1N ads_siteM no_equ_21L no_equ_20K no_equ_19J no_equ_18I no_equ_17H no_equ_16G no_equ_15F no_equ_14E no_equ_13D no_equ_12C no_equ_11B no_equ_10A no_equ_9@ no_equ_8? no_equ_7> no_equ_6= no_equ_5< no_equ_4; no_equ_3: no_equ_29 no_equ_18 ads_site7 no_equ_176 no_equ_165 no_equ_154 no_equ_143 no_equ_132 no_equ_121 no_equ_110 no_equ_10/ no_equ_9. no_equ_8- no_equ_7, no_equ_6+ no_equ_5* no_equ_4) no_equ_3( no_equ_2' no_equ_1& ads_site% no_equ_18$ no_equ_17# no_equ_16" no_equ_15! no_equ_14 no_equ_13 no_equ_12 no_equ_11 no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1 ads_site no_equ_16 no_equ_15 no_equ_14 no_equ_13 no_equ_12 no_equ_11 no_equ_10 no_equ_9 no_equ_8 no_equ_7 no_equ_6 no_equ_5 no_equ_4 no_equ_3 no_equ_2 no_equ_1  ads_site 8 Qec a+) }53 tr pUS Q@> KI #plane_index8!Dipole_val7 distance6 ads_E5 atom_E4 slab_E3 str_E2#plane_index1!Dipole_val0 distance/ ads_E. atom_E- slab_E, str_E+#plane_index*!Dipole_val) distance( ads_E' atom_E& slab_E% str_E$#plane_index#!Dipole_val" distance! ads_E atom_E slab_E str_E#plane_index!Dipole_val distance ads_E atom_E slab_E str_E#plane_index!Dipole_val distance ads_E atom_E slab_E str_E#plane_index!Dipole_val distance ads_E atom_E slab_E str_E#plane_index!Dipole_val distance ads_E atom_E slab_E str_Ey?^cު$@?@3h@^cު$@c@OIҵ@Ϡ$@HcC@>'I@n2d"!@x@6 r@Ș!@HcC@N ^@n2d"!@ @>'I@n2d"!@A+0du@6 r@Ș!@ @N ^@n2d"!@ܝ.@Ș!@6 r@zS c!@)Wx@Ș!@9]?n?'K@9]?9z@'K@?OIҵ@Gz@ 1@LH?Gz@ 1@dF@Gz@ 1@OIҵ@rt@k&l@n?'K@k&l@9z@'K@ՐDz@OIҵ@Gz@PN@ W8?cZB>@ǘ@6 r@9@PN@7ُ@cZB>@ۑ@ W8?cZB>@VF@6 r@9@ۑ@7ُ@cZB>@yCn;?9@6 r@mn@8 @9@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]}}]vasp{}h#bKh#= SKwi:Mi:M?8fٓli:Mi:M8fٓl*g\8@?O!WYp*g\8@O!WYp*g\8@?O!WYp¾DA?i:M?i:M?8fٓli:M?i:M8fٓl*g\8@O!WYptX?tX?̔[Ob?ȗPatX?tX??̔tXtX?̔[ObȗPatXtX??̔[ObȗPa({t[Ob?ȗPar&"@r&"@?)hmr&"@r&"@)hmI":̗`}I"?:̗`}I":̗`},amr&"@?r&"@?)hmr&"@?r&"@)hmI"?:̗`}: vQ: vQ?Bl`/"U%3{"str_E": -193.11296, "slab_E": -190.59214, "atom_E": -0.29886761, "ads_E": -2.2219523899999865, "distance": 1.8655, "Dipole_val": -2.98921, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.9,dipole:-0.645,distance:0.684,ads_E:-1.046", "no_equ_2": "ratio:0.93,dipole:-1.125,distance:1.042,ads_E:-1.567", "no_equ_3": "ratio:0.96,dipole:-1.624,distance:1.400,ads_E:-1.949", "no_equ_4": "ratio:1,dipole:-2.353,distance:1.877,ads_E:-2.141", "no_equ_5": "ratio:1.03,dipole:-2.924,distance:2.235,ads_E:-2.040", "no_equ_6": "ratio:1.06,dipole:-3.520,distance:2.592,ads_E:-1.776", "no_equ_7": "ratio:1.1,dipole:-4.039,distance:3.069,ads_E:-1.290", "no_equ_8": "ratio:1.13,dipole:-3.714,distance:3.427,ads_E:-0.940", "no_equ_9": "ratio:1.15,dipole:-3.511,distance:3.666,ads_E:-0.744", "no_equ_10": "ratio:1.17,dipole:-3.222,distance:3.904,ads_E:-0.582", "no_equ_11": "ratio:1.25,dipole:-2.667,distance:4.858,ads_E:-0.244", "no_equ_12": "ratio:1.3,dipole:-2.555,distance:5.454,ads_E:-0.165", "no_equ_13": "ratio:1.35,dipole:-2.533,distance:6.051,ads_E:-0.126", "no_equ_14": "ratio:1.5,dipole:-2.645,distance:7.839,ads_E:-0.084", "no_equ_15": "ratio:1.7,dipole:-2.867,distance:10.224,ads_E:-0.066", "no_equ_16": "ratio:1.9,dipole:-3.128,distance:12.609,ads_E:-0.058"}{}7?ma,?o8o@ ^@*6 r@M/!@QOI@^hH!@bg? a?mnLO@bg?ػ?ޫ@mnLO@0 GĔ?OIҵ@B=@ 1@,?B=@ 1@k@B=@ 1@OIҵ@|~!@9̗@ a?mnLO@9̗@ػ?ޫ@mnLO@̒@OIҵ@B=@"2@"\?:f@vöE@6 r@}˜.@"2@ @:f@N@@"\?:f@OXe@6 r@}˜.@N@@ @:f@ <^?}˜.@6 r@%zr@sw@}˜.@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]}}]vasp{}h2gh24H;o^lZg|_\rZg|_\r?AA)ZG?Zg|_\rZg|_\rAA)ZG?)qH70P?)qH?70P?)qH70P?ʼnvd?Zg|_\r?Zg|_\r?AA)ZG?Zg|_\r?Zg|_\rAA)ZG?)qH?70P?QfL2rF?QfL2rF?̔RVDׅ?k$ eQfL2rF?QfL2rF??̔RQfL2rFQfL2rF?̔RVDׅ??k$ eQfL2rFQfL2rF??̔RVDׅ??k$ e-lpVDׅ?k$ ePP?1?74e??PP1?74e??4i?A ]4iA ]4i?A ]d?H2P?P?1?74e??P?P1?74e??4iA ]w0bqw0bq? iTdk?rfB??u;ʃTw0bqw0bq iTdk?w0bq?w0bq? iTdk?rfB?u;ʃTw0bq?w0bq iTdk?rfB?u;ʃTM֨hrfB??u;ʃTW;sqW;sq?kȿW;sqW;sqkȿ`| yǿ`|? yǿ`| yǿ쟧ɿW;sq?W;sq?kȿW;sq?W;sqkȿ`|? yǿKo.?Ko.xe?S1#y?'XQ?Ko.?Ko.?xe?Ko.Ko.xe?S1#y'XQ?Ko.Ko.?xe?S1#y'XQ?X?S1#y?'XQ? Q/ q? Q/ q?`k e5h?{"str_E": -193.56568, "slab_E": -190.59214, "atom_E": -0.039435963, "ads_E": -2.934104036999986, "distance": 1.012, "Dipole_val": -0.0694739, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.9,dipole:0.302883,distance:-0.132247,ads_E:-2.36046", "no_equ_2": "ratio:0.93,dipole:0.340153,distance:0.19957,ads_E:-2.58415", "no_equ_3": "ratio:0.96,dipole:0.234375,distance:0.531386,ads_E:-2.83237", "no_equ_4": "ratio:1,dipole:0.00345513,distance:0.973808,ads_E:-2.95616", "no_equ_5": "ratio:1.03,dipole:-0.173906,distance:1.30562,ads_E:-2.87935", "no_equ_6": "ratio:1.06,dipole:-0.280091,distance:1.63744,ads_E:-2.62506", "no_equ_7": "ratio:1.1,dipole:-0.434967,distance:2.07986,ads_E:-1.97799", "no_equ_8": "ratio:1.13,dipole:-0.472991,distance:2.41168,ads_E:-1.3327", "no_equ_9": "ratio:1.16,dipole:-0.39644,distance:2.7435,ads_E:-0.772653", "no_equ_10": "ratio:1.2,dipole:-0.359907,distance:3.18592,ads_E:-0.372501", "no_equ_11": "ratio:1.25,dipole:-0.291055,distance:3.73895,ads_E:-0.152313", "no_equ_12": "ratio:1.3,dipole:-0.18803,distance:4.29197,ads_E:-0.0630632", "no_equ_13": "ratio:1.35,dipole:-0.0991408,distance:4.845,ads_E:-0.0276465", "no_equ_14": "ratio:1.4,dipole:-0.047443,distance:5.39803,ads_E:-0.0134448", "no_equ_15": "ratio:1.45,dipole:-0.0224294,distance:5.95106,ads_E:-0.00714774", "no_equ_16": "ratio:1.5,dipole:-0.0113499,distance:6.50408,ads_E:-0.00416696", "no_equ_17": "ratio:1.55,dipole:-0.00631543,distance:7.10066,ads_E:-0.00261613", "no_equ_18": "ratio:1.6,dipole:-0.00466727,distance:7.61014,ads_E:-0.0017761"}{}7?hM?q /Q @ ^@ bg ט@@j!@@6 r@V!@bg ט@iW!'@j!@v7Ouȍ@@j!@6;Nё@6 r@V!@v7Ouȍ@iW!'@j!@q@H6?V!@6 r@|a2%!@m@V!@=!7Í?N#-?v@=!7Í?2Y@v@Z֗?OIҵ@L;@ 1@^?L;@ 1@v28J^@L;@ 1@OIҵ@xN@D@N#-?v@D@2Y@v@j';@OIҵ@L;@n燑@y)@ x@b@6 r@&R?o@n燑@Z| @ x@ݰm@y)@ x@s ^@6 r@&R?o@ݰm@Z| @ x@c@&R?o@6 r@pZ@jM@&R?o@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?6 r@V %@1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]}}]vasp{}h6+oh^'`3`i?3`i9\3`i?3`i?9\Nwx&?boJNwx&boJNwx&?boJRW3`i3`i9\3`i3`i?9\Nwx&boJGG?2wV$@XduIGG2wVG?G?2wV$@X?duIG?G2wV$@X?duI9]k$@XduI$Di=?$Di=qimj$Di=?$Di=?qimj1]aX]/MA1]aX?]/MA1]aX]/MAY4 r$Di=$Di=qimj$Di=$Di=?qimj1]aX?]/MA..?zюK? Xrd?qne..zюK?.?.?zюK? Xrdqne.?.zюK? Xrdqnez2Qt Xrd?qne!S>u!S>u?Tqsǿ!S>u!S>uTqsǿL4HSu 7ſL4HSu? 7ſL4HSu 7ſܵ|˿!S>u?!S>u?Tqsǿ!S>u?!S>uTqsǿL4HSu? 7ſQ =?Q =/1?o`rzeOs?Q =?Q =?/1?Q =Q =/1?o`rz?eOs?Q =Q =?/1?o`rz?eOs?+?o`rzeOs?{\&k?5涝?5涝?@d?>AYf{"str_E": -196.41286, "slab_E": -190.59214, "atom_E": -0.34870277, "ads_E": -5.472017229999994, "distance": 0.408556, "Dipole_val": 0.558456, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.900,dipole:-0.012,distance:-0.696,ads_E:-4.781", "no_equ_2": "ratio:0.930,dipole:0.209,distance:-0.381,ads_E:-5.180", "no_equ_3": "ratio:0.960,dipole:0.398,distance:-0.066,ads_E:-5.490", "no_equ_4": "ratio:1.000,dipole:0.557,distance:0.353,ads_E:-5.662", "no_equ_5": "ratio:1.030,dipole:0.635,distance:0.668,ads_E:-5.579", "no_equ_6": "ratio:1.060,dipole:0.683,distance:0.983,ads_E:-5.361", "no_equ_7": "ratio:1.100,dipole:0.778,distance:1.402,ads_E:-4.794", "no_equ_8": "ratio:1.130,dipole:0.870,distance:1.717,ads_E:-4.122", "no_equ_9": "ratio:1.160,dipole:0.981,distance:2.032,ads_E:-3.278", "no_equ_10": "ratio:1.200,dipole:0.935,distance:2.451,ads_E:-2.045", "no_equ_11": "ratio:1.250,dipole:-0.107,distance:2.976,ads_E:-0.989", "no_equ_12": "ratio:1.350,dipole:-0.748,distance:4.025,ads_E:-0.303", "no_equ_13": "ratio:1.400,dipole:-0.694,distance:4.626,ads_E:-0.236", "no_equ_14": "ratio:1.500,dipole:-0.465,distance:5.598,ads_E:-0.193", "no_equ_15": "ratio:1.900,dipole:-0.558,distance:9.794,ads_E:-0.180", "no_equ_16": "ratio:2.000,dipole:-1.008,distance:10.843,ads_E:-0.007", "no_equ_17": "ratio:2.100,dipole:-0.833,distance:11.891,ads_E:-0.007"}{}7?tQ2z?5@ ^@䖇+ @ׁ@t@E>'@4 @OIҵ@6;N@Ll> @:f@Y@5@6 r@#bJ@Ll> @YB@Y@䃞ͪ@:f@Y@@6 r@#bJ@䃞ͪ@YB@Y@0@#bJ@6 r@b@a֔@#bJ@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?6 r@JRP%@1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]}}]vasp{}hh9R?h㈵>h㈵ԾnKX[?h㈵>h㈵>nKX[?x #1?>[{cx #1>[{cx #1?>[{c'Q|h㈵Ծh㈵ԾnKX[?h㈵Ծh㈵>nKX[?x #1>[{cO'3?O'3W\T[oӟHi?:vPw?O'3?O'3?W\T[O'3O'3W\T[oӟHi:vPw?O'3O'3?W\T[oӟHi:vPw?M]~?oӟHi?:vPw?մi{m?մi{mj,am}մi{m?մi{m?j,am}b[>N?}\*{b[>N}\*{b[>N?}\*{zմi{mմi{mj,am}մi{mմi{m?j,am}b[>N}\*{() l() l?-;F?㊋rS?¾D1?() l() l-;F?() l?() l?-;F?㊋rS¾D1?() l?() l-;F?㊋rS¾D1? ?㊋rS?¾D1?[z4c[z4c?bA Bȿ[z4c[z4cbA Bȿy?VW9ȿyVW9ȿy?VW9ȿ2 {Ͽ[z4c?[z4c?bA Bȿ[z4c?[z4cbA BȿyVW9ȿM ĝ?M ĝU*?uۈ'i=dʇj?M ĝ?M ĝ?U*?M ĝM ĝU*?uۈ'i?=dʇj?M ĝM ĝ?U*?uۈ'i?=dʇj?W?uۈ'i=dʇj?QcB%u?\VPW?\VPW?nʽf? z{"str_E": -198.09409, "slab_E": -190.59214, "atom_E": -1.2476334, "ads_E": -6.254316599999994, "distance": 0.259519, "Dipole_val": 0.431093, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.9,dipole:-0.0331232,distance:-0.775014,ads_E:-5.11493", "no_equ_2": "ratio:0.93,dipole:0.104359,distance:-0.462661,ads_E:-5.77067", "no_equ_3": "ratio:0.96,dipole:0.291413,distance:-0.150308,ads_E:-6.20762", "no_equ_4": "ratio:1,dipole:0.52283,distance:0.266163,ads_E:-6.42427", "no_equ_5": "ratio:1.03,dipole:0.653681,distance:0.578516,ads_E:-6.33223", "no_equ_6": "ratio:1.06,dipole:0.76872,distance:0.890869,ads_E:-6.06915", "no_equ_7": "ratio:1.1,dipole:1.00519,distance:1.30734,ads_E:-5.4061", "no_equ_8": "ratio:1.13,dipole:1.19768,distance:1.61969,ads_E:-4.67472", "no_equ_9": "ratio:1.16,dipole:1.37647,distance:1.93205,ads_E:-3.75037", "no_equ_10": "ratio:1.2,dipole:1.54212,distance:2.34852,ads_E:-2.29339", "no_equ_11": "ratio:1.25,dipole:1.94527,distance:2.86911,ads_E:-0.945693", "no_equ_12": "ratio:1.3,dipole:2.30687,distance:3.38969,ads_E:-0.486531", "no_equ_13": "ratio:1.35,dipole:2.50975,distance:3.91028,ads_E:-0.271632", "no_equ_14": "ratio:1.4,dipole:2.63066,distance:4.43087,ads_E:-0.175371", "no_equ_15": "ratio:1.45,dipole:2.19263,distance:4.95146,ads_E:-0.182345", "no_equ_16": "ratio:1.51,dipole:2.9677,distance:5.57616,ads_E:-0.10513", "no_equ_17": "ratio:1.55,dipole:3.07149,distance:5.99264,ads_E:-0.095025", "no_equ_18": "ratio:1.6,dipole:3.20521,distance:6.61329,ads_E:-0.0862335", "no_equ_19": "ratio:1.8,dipole:3.74248,distance:8.59558,ads_E:-0.0684837", "no_equ_20": "ratio:2.1,dipole:5.51535,distance:11.7191,ads_E:-0.0591715", "no_equ_21": "ratio:2.2,dipole:7.59718,distance:12.7603,ads_E:-0.0579928"}{}7?z?WPV\@ ^@p ;n,i( a  W  v , L  m #>TeUE|9m(Yp$D;{no_equ_4ratio:1,dipole:0.52283,distance:0.266163,ads_E:-6.42427J:no_equ_3ratio:0.96,dipole:0.291413,distance:-0.150308,ads_E:-6.20762J9no_equ_2ratio:0.93,dipole:0.104359,distance:-0.462661,ads_E:-5.77067K8no_equ_1ratio:0.9,dipole:-0.0331232,distance:-0.775014,ads_E:-5.114937ads_sitefD6yno_equ_17ratio:2.100,dipole:-0.833,distance:11.891,ads_E:-0.007D5yno_equ_16ratio:2.000,dipole:-1.008,distance:10.843,ads_E:-0.007C4wno_equ_15ratio:1.900,dipole:-0.558,distance:9.794,ads_E:-0.180C3wno_equ_14ratio:1.500,dipole:-0.465,distance:5.598,ads_E:-0.193C2wno_equ_13ratio:1.400,dipole:-0.694,distance:4.626,ads_E:-0.236C1wno_equ_12ratio:1.350,dipole:-0.748,distance:4.025,ads_E:-0.303C0wno_equ_11ratio:1.250,dipole:-0.107,distance:2.976,ads_E:-0.989B/uno_equ_10ratio:1.200,dipole:0.935,distance:2.451,ads_E:-2.045A.uno_equ_9ratio:1.160,dipole:0.981,distance:2.032,ads_E:-3.278A-uno_equ_8ratio:1.130,dipole:0.870,distance:1.717,ads_E:-4.122A,uno_equ_7ratio:1.100,dipole:0.778,distance:1.402,ads_E:-4.794A+uno_equ_6ratio:1.060,dipole:0.683,distance:0.983,ads_E:-5.361A*uno_equ_5ratio:1.030,dipole:0.635,distance:0.668,ads_E:-5.579A)uno_equ_4ratio:1.000,dipole:0.557,distance:0.353,ads_E:-5.662B(wno_equ_3ratio:0.960,dipole:0.398,distance:-0.066,ads_E:-5.490B'wno_equ_2ratio:0.930,dipole:0.209,distance:-0.381,ads_E:-5.180C&yno_equ_1ratio:0.900,dipole:-0.012,distance:-0.696,ads_E:-4.781%ads_sitefM$ no_equ_18ratio:1.6,dipole:-0.00466727,distance:7.61014,ads_E:-0.0017761O# no_equ_17ratio:1.55,dipole:-0.00631543,distance:7.10066,ads_E:-0.00261613M" no_equ_16ratio:1.5,dipole:-0.0113499,distance:6.50408,ads_E:-0.00416696N! no_equ_15ratio:1.45,dipole:-0.0224294,distance:5.95106,ads_E:-0.00714774K no_equ_14ratio:1.4,dipole:-0.047443,distance:5.39803,ads_E:-0.0134448Kno_equ_13ratio:1.35,dipole:-0.0991408,distance:4.845,ads_E:-0.0276465Jno_equ_12ratio:1.3,dipole:-0.18803,distance:4.29197,ads_E:-0.0630632Kno_equ_11ratio:1.25,dipole:-0.291055,distance:3.73895,ads_E:-0.152313Jno_equ_10ratio:1.2,dipole:-0.359907,distance:3.18592,ads_E:-0.372501Hno_equ_9ratio:1.16,dipole:-0.39644,distance:2.7435,ads_E:-0.772653Hno_equ_8ratio:1.13,dipole:-0.472991,distance:2.41168,ads_E:-1.3327Hno_equ_7ratio:1.1,dipole:-0.434967,distance:2.07986,ads_E:-1.97799Ino_equ_6ratio:1.06,dipole:-0.280091,distance:1.63744,ads_E:-2.62506Ino_equ_5ratio:1.03,dipole:-0.173906,distance:1.30562,ads_E:-2.87935Hno_equ_4ratio:1,dipole:0.00345513,distance:0.973808,ads_E:-2.95616Ino_equ_3ratio:0.96,dipole:0.234375,distance:0.531386,ads_E:-2.83237Hno_equ_2ratio:0.93,dipole:0.340153,distance:0.19957,ads_E:-2.58415Ino_equ_1ratio:0.9,dipole:0.302883,distance:-0.132247,ads_E:-2.36046ads_sitefAu no_equ_16ratio:1.9,dipole:-3.128,distance:12.609,ads_E:-0.058Au no_equ_15ratio:1.7,dipole:-2.867,distance:10.224,ads_E:-0.066@s no_equ_14ratio:1.5,dipole:-2.645,distance:7.839,ads_E:-0.084Au no_equ_13ratio:1.35,dipole:-2.533,distance:6.051,ads_E:-0.126@ s no_equ_12ratio:1.3,dipole:-2.555,distance:5.454,ads_E:-0.165A u no_equ_11ratio:1.25,dipole:-2.667,distance:4.858,ads_E:-0.244A u no_equ_10ratio:1.17,dipole:-3.222,distance:3.904,ads_E:-0.582@ u no_equ_9ratio:1.15,dipole:-3.511,distance:3.666,ads_E:-0.744@ u no_equ_8ratio:1.13,dipole:-3.714,distance:3.427,ads_E:-0.940?s no_equ_7ratio:1.1,dipole:-4.039,distance:3.069,ads_E:-1.290@u no_equ_6ratio:1.06,dipole:-3.520,distance:2.592,ads_E:-1.776@u no_equ_5ratio:1.03,dipole:-2.924,distance:2.235,ads_E:-2.040=o no_equ_4ratio:1,dipole:-2.353,distance:1.877,ads_E:-2.141@u no_equ_3ratio:0.96,dipole:-1.624,distance:1.400,ads_E:-1.949@u no_equ_2ratio:0.93,dipole:-1.125,distance:1.042,ads_E:-1.567?s no_equ_1ratio:0.9,dipole:-0.645,distance:0.684,ads_E:-1.046  ads_sitef ;k%M n % G f  A  ~ =w4k(`By6l(\~;Avuno_equ_4ratio:1.000,dipole:0.693,distance:1.239,ads_E:-4.335Auuno_equ_3ratio:0.960,dipole:0.260,distance:0.787,ads_E:-4.090Atuno_equ_2ratio:0.930,dipole:0.015,distance:0.447,ads_E:-3.637Bswno_equ_1ratio:0.900,dipole:-0.137,distance:0.107,ads_E:-3.084rads_sitefCqwno_equ_16ratio:2.100,dipole:4.187,distance:12.753,ads_E:-0.168Cpwno_equ_15ratio:1.900,dipole:6.642,distance:10.576,ads_E:-0.174Bouno_equ_14ratio:1.550,dipole:3.996,distance:6.765,ads_E:-0.507Bnuno_equ_13ratio:1.350,dipole:3.982,distance:4.588,ads_E:-0.321Bmuno_equ_12ratio:1.310,dipole:3.768,distance:4.152,ads_E:-0.372Bluno_equ_11ratio:1.250,dipole:3.446,distance:3.499,ads_E:-0.537Bkuno_equ_10ratio:1.200,dipole:3.021,distance:2.955,ads_E:-0.945Ajuno_equ_9ratio:1.160,dipole:2.453,distance:2.519,ads_E:-1.842Aiuno_equ_8ratio:1.130,dipole:1.922,distance:2.193,ads_E:-2.973Ahuno_equ_7ratio:1.100,dipole:1.502,distance:1.866,ads_E:-3.941Aguno_equ_6ratio:1.060,dipole:1.037,distance:1.431,ads_E:-4.883Afuno_equ_5ratio:1.030,dipole:0.754,distance:1.104,ads_E:-5.283Aeuno_equ_4ratio:1.000,dipole:0.486,distance:0.778,ads_E:-5.406Aduno_equ_3ratio:0.960,dipole:0.131,distance:0.342,ads_E:-5.226Bcwno_equ_2ratio:0.930,dipole:-0.058,distance:0.015,ads_E:-4.909Cbyno_equ_1ratio:0.900,dipole:-0.175,distance:-0.311,ads_E:-4.372aads_sitef@`qno_equ_19ratio:1.6,dipole:0.009,distance:6.693,ads_E:-0.002A_sno_equ_18ratio:1.55,dipole:0.009,distance:6.168,ads_E:-0.002@^qno_equ_17ratio:1.5,dipole:0.030,distance:5.736,ads_E:-0.004A]sno_equ_16ratio:1.45,dipole:0.007,distance:5.116,ads_E:-0.007A\sno_equ_15ratio:1.4,dipole:-0.095,distance:4.680,ads_E:-0.016B[uno_equ_14ratio:1.36,dipole:-0.067,distance:4.254,ads_E:-0.030AZsno_equ_13ratio:1.33,dipole:0.416,distance:3.855,ads_E:-0.042@Yqno_equ_12ratio:1.3,dipole:0.575,distance:3.539,ads_E:-0.068AXsno_equ_11ratio:1.25,dipole:0.908,distance:3.014,ads_E:-0.162@Wqno_equ_10ratio:1.2,dipole:1.380,distance:2.488,ads_E:-0.433@Vsno_equ_9ratio:1.16,dipole:1.554,distance:2.068,ads_E:-1.933@Usno_equ_8ratio:1.13,dipole:1.347,distance:1.752,ads_E:-2.917?Tqno_equ_7ratio:1.1,dipole:1.088,distance:1.437,ads_E:-3.705@Ssno_equ_6ratio:1.06,dipole:0.760,distance:1.016,ads_E:-4.404@Rsno_equ_5ratio:1.03,dipole:0.566,distance:0.701,ads_E:-4.655=Qmno_equ_4ratio:1,dipole:0.368,distance:0.386,ads_E:-4.725APuno_equ_3ratio:0.96,dipole:0.160,distance:-0.035,ads_E:-4.570BOwno_equ_2ratio:0.93,dipole:-0.001,distance:-0.350,ads_E:-4.156ANuno_equ_1ratio:0.9,dipole:-0.149,distance:-0.666,ads_E:-3.448Mads_sitefILno_equ_21ratio:2.2,dipole:7.59718,distance:12.7603,ads_E:-0.0579928IKno_equ_20ratio:2.1,dipole:5.51535,distance:11.7191,ads_E:-0.0591715IJno_equ_19ratio:1.8,dipole:3.74248,distance:8.59558,ads_E:-0.0684837IIno_equ_18ratio:1.6,dipole:3.20521,distance:6.61329,ads_E:-0.0862335IHno_equ_17ratio:1.55,dipole:3.07149,distance:5.99264,ads_E:-0.095025FG}no_equ_16ratio:1.51,dipole:2.9677,distance:5.57616,ads_E:-0.10513IFno_equ_15ratio:1.45,dipole:2.19263,distance:4.95146,ads_E:-0.182345GEno_equ_14ratio:1.4,dipole:2.63066,distance:4.43087,ads_E:-0.175371IDno_equ_13ratio:1.35,dipole:2.50975,distance:3.91028,ads_E:-0.271632GCno_equ_12ratio:1.3,dipole:2.30687,distance:3.38969,ads_E:-0.486531IBno_equ_11ratio:1.25,dipole:1.94527,distance:2.86911,ads_E:-0.945693FA}no_equ_10ratio:1.2,dipole:1.54212,distance:2.34852,ads_E:-2.29339F@no_equ_9ratio:1.16,dipole:1.37647,distance:1.93205,ads_E:-3.75037F?no_equ_8ratio:1.13,dipole:1.19768,distance:1.61969,ads_E:-4.67472D>{no_equ_7ratio:1.1,dipole:1.00519,distance:1.30734,ads_E:-5.4061H=no_equ_6ratio:1.06,dipole:0.76872,distance:0.890869,ads_E:-6.06915I<no_equ_5ratio:1.03,dipole:0.653681,distance:0.578516,ads_E:-6.33223@6 r@+E!@0Bx@(yu@$!@g@+E!@6 r@.=!@BB@+E!@ԕ?"uq?U0*@ԕ?ec]@U0*@ۧ1?OIҵ@6o@ 1@(?6o@ 1@\*@6o@ 1@OIҵ@8@~j@"uq?U0*@~j@ec]@U0*@D@OIҵ@6o@OXe@h:;@j0 G@Kq@6 r@m2@OXe@On@j0 G@#@h:;@j0 G@^x@6 r@m2@#@On@j0 G@ctv2@m2@6 r@^@~jt@m2@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?6 r@%@1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]}}]vasp{}h,hB⨬13fc3fc?10&D3fc3fc10&D̯\?V9 `>9 `?t^c:?>9 `>9 `t^c:?;Dn{GzD?;Dn?{GzD?;Dn{GzD?]E~5?>9 `?>9 `?t^c:?>9 `?>9 `t^c:?;Dn?{GzD?MjhAMjhA?(ȯoǺV"L?MjhAMjhA(ȯoMjhA?MjhA?(ȯoǺV?"L?MjhA?MjhA(ȯoǺV?"L?)gǺV"L?Ku/3ldKu/3ld?8dǿKu/3ldKu/3ld8dǿ?T1ϓ?Ҩ6ʿ?T1ϓҨ6ʿ?T1ϓ?Ҩ6ʿU pAοKu/3ld?Ku/3ld?8dǿKu/3ld?Ku/3ld8dǿ?T1ϓҨ6ʿ1(hr1?1(hr1W`V?5w?I m6?1(hr1?1(hr1?W`V?1(hr11(hr1W`V?5wI m6?1(hr11(hr1?W`V?5w􏿕I m6?3 ?5w?I m6?I*SAp?fo&}?fo&}?Y)mX_?! v{"str_E": -198.31549, "slab_E": -190.59214, "atom_E": -3.123956, "ads_E": -4.599394000000011, "distance": 0.398631, "Dipole_val": 0.356485, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.9,dipole:-0.149,distance:-0.666,ads_E:-3.448", "no_equ_2": "ratio:0.93,dipole:-0.001,distance:-0.350,ads_E:-4.156", "no_equ_3": "ratio:0.96,dipole:0.160,distance:-0.035,ads_E:-4.570", "no_equ_4": "ratio:1,dipole:0.368,distance:0.386,ads_E:-4.725", "no_equ_5": "ratio:1.03,dipole:0.566,distance:0.701,ads_E:-4.655", "no_equ_6": "ratio:1.06,dipole:0.760,distance:1.016,ads_E:-4.404", "no_equ_7": "ratio:1.1,dipole:1.088,distance:1.437,ads_E:-3.705", "no_equ_8": "ratio:1.13,dipole:1.347,distance:1.752,ads_E:-2.917", "no_equ_9": "ratio:1.16,dipole:1.554,distance:2.068,ads_E:-1.933", "no_equ_10": "ratio:1.2,dipole:1.380,distance:2.488,ads_E:-0.433", "no_equ_11": "ratio:1.25,dipole:0.908,distance:3.014,ads_E:-0.162", "no_equ_12": "ratio:1.3,dipole:0.575,distance:3.539,ads_E:-0.068", "no_equ_13": "ratio:1.33,dipole:0.416,distance:3.855,ads_E:-0.042", "no_equ_14": "ratio:1.36,dipole:-0.067,distance:4.254,ads_E:-0.030", "no_equ_15": "ratio:1.4,dipole:-0.095,distance:4.680,ads_E:-0.016", "no_equ_16": "ratio:1.45,dipole:0.007,distance:5.116,ads_E:-0.007", "no_equ_17": "ratio:1.5,dipole:0.030,distance:5.736,ads_E:-0.004", "no_equ_18": "ratio:1.55,dipole:0.009,distance:6.168,ads_E:-0.002", "no_equ_19": "ratio:1.6,dipole:0.009,distance:6.693,ads_E:-0.002"}{}7?uP1*?}&of@ ^@dZ4@@$@:KT@OIҵ@(A&$@ctv2x@x@?cZ2!@9#J{@6 r@})!@ctv2x@=ׄ@cZ2!@YQi@x@?cZ2!@ @6 r@})!@YQi@=ׄ@cZ2!@bJ$(?})!@6 r@" @JOc@})!@$?Yw?.@$?H3Mg@.@I ?OIҵ@n@ 1@ ϛ?n@ 1@ p@n@ 1@OIҵ@ڧ1#@u7@Yw?.@u7@H3Mg@.@XQi@OIҵ@n@_vO@@T:X@ĔH@6 r@@_vO@n͓@T:X@}"@@T:X@oe@6 r@@}"@n͓@T:X@`5!@@6 r@Y8ŭ@n燑@@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?6 r@,`&@1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]}}]vasp{}hRDhS[ s?S[ sHPXS[ s?S[ s?HPX W8?ҏS[? W8ҏS[? W8?ҏS[?IC3TS[ sS[ sHPXS[ sS[ s?HPX W8ҏS[?=\r)=?=\r)=$Di-?TsPEy76=\r)=?=\r)=?$Di-?=\r)==\r)=$Di-?TsPE?y76=\r)==\r)=?$Di-?TsPE?y76vEpTsPEy76 iTdK iTdK?mi*I? iTdK iTdKmi*I?4 ;8{V0?4 ;8?{V0?4 ;8{V0?s.UeU iTdK? iTdK?mi*I? iTdK? iTdKmi*I?4 ;8?{V0?N&O:aN&O:a?+b a>dN&O:aN&O:a+bN&O:a?N&O:a?+b ?a>dN&O:a?N&O:a+b ?a>db? a>dQ [w?Q [wwǿQ [w?Q [w?wǿXR>Ǘ?NǿXR>ǗNǿXR>Ǘ?NǿJ_9ǿQ [wQ [wwǿQ [wQ [w?wǿXR>ǗNǿYb+hzYb+hz?R{?Tf ~?̯?Yb+hzYb+hzR{?Yb+hz?Yb+hz?R{?Tf ~̯?Yb+hz?Yb+hzR{?Tf ~̯?D;)?Tf ~?̯?x"?V ?V ?)!c?>;{{"str_E": -197.51012, "slab_E": -190.59214, "atom_E": -1.5326215, "ads_E": -5.3853585, "distance": 0.772112, "Dipole_val": 0.472578, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.900,dipole:-0.175,distance:-0.311,ads_E:-4.372", "no_equ_2": "ratio:0.930,dipole:-0.058,distance:0.015,ads_E:-4.909", "no_equ_3": "ratio:0.960,dipole:0.131,distance:0.342,ads_E:-5.226", "no_equ_4": "ratio:1.000,dipole:0.486,distance:0.778,ads_E:-5.406", "no_equ_5": "ratio:1.030,dipole:0.754,distance:1.104,ads_E:-5.283", "no_equ_6": "ratio:1.060,dipole:1.037,distance:1.431,ads_E:-4.883", "no_equ_7": "ratio:1.100,dipole:1.502,distance:1.866,ads_E:-3.941", "no_equ_8": "ratio:1.130,dipole:1.922,distance:2.193,ads_E:-2.973", "no_equ_9": "ratio:1.160,dipole:2.453,distance:2.519,ads_E:-1.842", "no_equ_10": "ratio:1.200,dipole:3.021,distance:2.955,ads_E:-0.945", "no_equ_11": "ratio:1.250,dipole:3.446,distance:3.499,ads_E:-0.537", "no_equ_12": "ratio:1.310,dipole:3.768,distance:4.152,ads_E:-0.372", "no_equ_13": "ratio:1.350,dipole:3.982,distance:4.588,ads_E:-0.321", "no_equ_14": "ratio:1.550,dipole:3.996,distance:6.765,ads_E:-0.507", "no_equ_15": "ratio:1.900,dipole:6.642,distance:10.576,ads_E:-0.174", "no_equ_16": "ratio:2.100,dipole:4.187,distance:12.753,ads_E:-0.168"}{}7?"x? V@ ^@KƧfI@@j'$@Pk@OIҵ@q$@g@ / ?Ȱ72!@\mr@6 r@u-!@g@ r@Ȱ72!@CO}@ / ?Ȱ72!@ B@6 r@u-!@CO}@ r@Ȱ72!@;)t?u-!@6 r@gs!@5Ry;@u-!@3ı.n?ʾ+? $(~@3ı.n?Pc*@ $(~@Jh?OIҵ@X@ 1@=D;?X@ 1@q&@X@ 1@OIҵ@/>:u%@HV@ʾ+? $(~@HV@Pc*@ $(~@bg ׸@OIҵ@X@ZB>@.!@n4@0@6 r@k&߬@ZB>@KԲ@n4@=@.!@n4@xZ@6 r@k&߬@=@KԲ@n4@KqU@k&߬@6 r@s@d`T@k&߬@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?6 r@Tr3@'@1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]}}]vasp{}hh)Jhi.l^1ZGUC?1ZGUC6pt1ZGUC?1ZGUC?6pt`x%s}OWw`x%s}O?Ww`x%s}OWww1ZGUC1ZGUC6pt1ZGUC1ZGUC?6pt`x%s}O?WwQ\Q\?lTO_MVnʆ5eQ\Q\lTO_Q\?Q\?lTO_MV?nʆ5eQ\?Q\lTO_MV?nʆ5et>6lge?6lge?g,{r6lge?6lgeg,{rWN?3fCQ\Q\?Ǻ6VDׅOpzgQ\Q\Ǻ6Q\?Q\?Ǻ6VDׅO?pzgQ\?Q\Ǻ6VDׅO?pzg˵hvVDׅOpzg5_% d5_% d?l\Ϝſ5_% d5_% dl\Ϝſ0H?h㈵Ŀ0Hh㈵Ŀ0H?h㈵Ŀ070Qȿ5_% d?5_% d?l\Ϝſ5_% d?5_% dl\Ϝſ0Hh㈵Ŀk?kdT8?#&?u<?k?k?dT8?kkdT8?#&u<?kk?dT8?#&u<?Ũk}?#&?u<? ~K?_#E?_#E?\Xjf?Y{"str_E": -195.27956, "slab_E": -190.59214, "atom_E": -0.42381475, "ads_E": -4.263605250000003, "distance": 1.23771, "Dipole_val": 0.677168, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.900,dipole:-0.137,distance:0.107,ads_E:-3.084", "no_equ_2": "ratio:0.930,dipole:0.015,distance:0.447,ads_E:-3.637", "no_equ_3": "ratio:0.960,dipole:0.260,distance:0.787,ads_E:-4.090", "no_equ_4": "ratio:1.000,dipole:0.693,distance:1.239,ads_E:-4.335", "no_equ_5": "ratio:1.030,dipole:1.159,distance:1.579,ads_E:-4.212", "no_equ_6": "ratio:1.060,dipole:1.787,distance:1.918,ads_E:-3.859", "no_equ_7": "ratio:1.100,dipole:3.086,distance:2.371,ads_E:-3.138", "no_equ_8": "ratio:1.130,dipole:4.250,distance:2.711,ads_E:-2.537", "no_equ_9": "ratio:1.160,dipole:5.403,distance:3.050,ads_E:-2.006", "no_equ_10": "ratio:1.250,dipole:6.761,distance:4.069,ads_E:-1.287", "no_equ_11": "ratio:1.300,dipole:7.369,distance:4.635,ads_E:-1.125", "no_equ_12": "ratio:1.450,dipole:8.949,distance:6.333,ads_E:-0.889", "no_equ_13": "ratio:1.550,dipole:9.933,distance:7.465,ads_E:-0.801", "no_equ_14": "ratio:1.600,dipole:10.431,distance:8.031,ads_E:-0.769", "no_equ_15": "ratio:1.900,dipole:13.468,distance:11.427,ads_E:-0.666"}{}7?wm"*L?E#_@ ^@!#  6 6(MD\{\lw 300141b0449449af0b566fa3f6b40fb8@7ł;@9[p%0heccoꐛ?E_A?$@oꐛ?n4@@$@A+0du?OIҵ@(A&$@ 1@c@zw?(A&$@ 1@"-@(A&$@ 1@OIҵ@iW!'$@oʡ@E_A?$@oʡ@nq(MD\{\lm 60a978082364e2a3881d78c2d8135e32@7ł7@9[pheccPLۿ2?#0?DԷ$@PLۿ2?*@DԷ$@EJ?OIҵ@E$@ 1@eI?E$@ 1@@E$@ 1@OIҵ@K$@vꭁ@#0?DԷ$@vꭁ@*@DԷ$@ޣ@OIҵ@E$@%zr@Gŧh?$!@= @6 r@+E!@%zr@(yu@$!@0Bx@Gŧh?$!@=U (MD\{\l 5b9ec0af3c1903a2daf5fb3877a2bae5@7ł3mb@9[pLhecc;Nё\?S"^?%zr$@;Nё\?Ve?@%zr$@v?OIҵ@$@ 1@hHKe?$@ 1@J@$@ 1@OIҵ@ɓk&$@+j0 @S"^?%zr$@+j0 @Ve?@%zr$@V`Ȫ@OIҵ@$@@j+@2d!!@\wT@6 r@b=!@@@2d!!@:u<@j+@2d!!@]C@6 r@b=!@:u<@@2d!!@pq@b=!@6 r@Uj@+!@e@b=!@ 3?x&1?E>'@ 3?t@E>'@#?OIҵ@6;N@ 1@yCn?6;N@ 1@R8@6;N@ 1@OIҵ@9EGr@ׁ@x&1?E>' (MD\{\l# 9b00394556c76fd7950050ca57892315@7ł.@9[pr-heccfIZ?xEl?nnLOX$@fIZ? K??P2˲$@ 1@&:@P2˲$@ 1@OIҵ@P6 $@L;@g\8?N@$@L;@<@N@$@/񝘵@OIҵ@P2˲$@ަ?@Dn@(a_)!@n燑@6 r@DU)!@ަ?@6o@(a_)!@J4@Dn@(a_)!@ݰm@6 r@DU)!@J4@6o@(a_)!@y)@DU)!@6 r@%jj)!@Z| @DU)!@o\?oӟH?tF@o\?BsF@tF@80?OIҵ@D )@ 1@y):?D )@ 1@o_@D )@ 1@OIҵ@&pn@/ǵ@oӟH?tF@/ǵ@BsF@tF@t@OIҵ@D )@ rh@iUMu>v7Ouȭ@+ٱ@6 r@@ rh@4Op@v7Ouȭ@Z| @iUMu>v7Ouȭ@'X@6 r@@Z| @4Op@v7Ouȭ@l/@@6 r@:@ĔH@@ek}?ek}?_@ek}? 1@_@ek}?OIҵ@_@ 1@ek}?_@ 1@ 1@_@ 1@OIҵ@_@OIҵ@ek}?_@OIҵ@ 1@_@OIҵ@OIҵ@_@6 r@\wT\?6 r@6 x(MD\{\l{ 595d4c13b40505314ed4d66471c18ede@7ł?@9[pshecc >"D?PN?@j'$@>"D?{fI@@j'$@_$\?OIҵ@q$@ 1@jt?q$@ 1@fa@q$@ 1@OIҵ@B5v$@*5{@PN?@j'$@*5{@{ +z7m) [   ~ ; t 0 d ! U F{7k(\A!sno_equ_31ratio:1.5,dipole:0.000,distance:10.329,ads_E:-0.005B uno_equ_30ratio:1.48,dipole:0.000,distance:10.057,ads_E:-0.005Asno_equ_29ratio:1.46,dipole:0.000,distance:9.786,ads_E:-0.005Asno_equ_28ratio:1.44,dipole:0.000,distance:9.515,ads_E:-0.005Asno_equ_27ratio:1.42,dipole:0.000,distance:9.243,ads_E:-0.005@qno_equ_26ratio:1.4,dipole:0.000,distance:8.972,ads_E:-0.005Asno_equ_25ratio:1.38,dipole:0.000,distance:8.701,ads_E:-0.005Asno_equ_24ratio:1.36,dipole:0.001,distance:8.429,ads_E:-0.005Asno_equ_23ratio:1.34,dipole:0.001,distance:8.158,ads_E:-0.005Asno_equ_22ratio:1.32,dipole:0.002,distance:7.887,ads_E:-0.005@qno_equ_21ratio:1.3,dipole:0.002,distance:7.615,ads_E:-0.005Asno_equ_20ratio:1.28,dipole:0.001,distance:7.344,ads_E:-0.005Asno_equ_19ratio:1.26,dipole:0.002,distance:7.073,ads_E:-0.005Asno_equ_18ratio:1.24,dipole:0.002,distance:6.801,ads_E:-0.005Asno_equ_17ratio:1.22,dipole:0.004,distance:6.530,ads_E:-0.006@qno_equ_16ratio:1.2,dipole:0.005,distance:6.259,ads_E:-0.006Asno_equ_15ratio:1.18,dipole:0.006,distance:5.987,ads_E:-0.007Asno_equ_14ratio:1.16,dipole:0.006,distance:5.716,ads_E:-0.008Asno_equ_13ratio:1.14,dipole:0.008,distance:5.445,ads_E:-0.009Asno_equ_12ratio:1.12,dipole:0.009,distance:5.173,ads_E:-0.010@ qno_equ_11ratio:1.1,dipole:0.008,distance:4.902,ads_E:-0.012A sno_equ_10ratio:1.08,dipole:0.005,distance:4.631,ads_E:-0.014A uno_equ_9ratio:1.06,dipole:-0.003,distance:4.359,ads_E:-0.016A uno_equ_8ratio:1.04,dipole:-0.018,distance:4.088,ads_E:-0.017A uno_equ_7ratio:1.02,dipole:-0.049,distance:3.817,ads_E:-0.015>ono_equ_6ratio:1,dipole:-0.100,distance:3.545,ads_E:-0.007@sno_equ_5ratio:0.98,dipole:-0.177,distance:3.274,ads_E:0.014@sno_equ_4ratio:0.96,dipole:-0.291,distance:3.002,ads_E:0.057@sno_equ_3ratio:0.94,dipole:-0.431,distance:2.731,ads_E:0.139@sno_equ_2ratio:0.92,dipole:-0.596,distance:2.460,ads_E:0.278?qno_equ_1ratio:0.9,dipole:-0.757,distance:2.324,ads_E:0.500ads_sitefDyno_equ_15ratio:1.900,dipole:13.468,distance:11.427,ads_E:-0.666Cwno_equ_14ratio:1.600,dipole:10.431,distance:8.031,ads_E:-0.769Buno_equ_13ratio:1.550,dipole:9.933,distance:7.465,ads_E:-0.801B~uno_equ_12ratio:1.450,dipole:8.949,distance:6.333,ads_E:-0.889B}uno_equ_11ratio:1.300,dipole:7.369,distance:4.635,ads_E:-1.125B|uno_equ_10ratio:1.250,dipole:6.761,distance:4.069,ads_E:-1.287A{uno_equ_9ratio:1.160,dipole:5.403,distance:3.050,ads_E:-2.006Azuno_equ_8ratio:1.130,dipole:4.250,distance:2.711,ads_E:-2.537Ayuno_equ_7ratio:1.100,dipole:3.086,distance:2.371,ads_E:-3.138Axuno_equ_6ratio:1.060,dipole:1.787,distance:1.918,ads_E:-3.859Awuno_equ_5ratio:1.030,dipole:1.159,distance:1.579,ads_E:-4.212r@\wT\?6 r@oG8-x@\wT\?oG8-x@\wT\?oG8-x@6 r@\wT\?oG8-x@oG8-x@\wT\?\wT\?6 r@\wT\?oG8-x@\wT\?1@1@4}=@[{"name": "FixAtoms", "kwargs": {"indices": [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]}}]vasp{}gD`gps8Mb rfB??rfB?.hrfB??rfB??.h܂Y # f?܂Y? # f?܂Y # f?q@Hf?rfB?rfB?.hrfB?rfB??.h܂Y? # f?"\"\?p>?P? Y6Ko.J"\"\p>?P"\?"\?p>?P? Y?6Ko.J"\?"\p>?P? Y?6Ko.JsmBY1\-?_>Y1\-c#G?N ^5tiP_>Y1\-?_>Y1\-?c#G?_>Y1\-_>Y1\-c#G?N ^5?tiP_>Y1\-_>Y1\-?c#G?N ^5?tiPǁW}N ^5tiP\5Q\5Q? oſ\5Q\5Q oſ`x%s}OS{F"ƿ`x%s}O?S{F"ƿ`x%s}OS{F"ƿ:#J{/ƿ\5Q?\5Q? oſ\5Q?\5Q oſ`x%s}O?S{F"ƿ iTd;? iTd;P2b?oӟHI? ?n? iTd;? iTd;?P2b? iTd; iTd;P2b?oӟHI ?n? iTd; iTd;?P2b?oӟHI ?n?XvMHk?oӟHI? ?n?ȋ7s3?ȋ7s3?vkb? cK{"str_E": -190.59757, "slab_E": -190.59214, "atom_E": -0.025496589, "ads_E": 0.020066589000010168, "distance": 3.86136, "Dipole_val": -0.0487431, "plane_index": 100, "ads_site": "f", "no_equ_1": "ratio:0.9,dipole:-0.757,distance:2.324,ads_E:0.500", "no_equ_2": "ratio:0.92,dipole:-0.596,distance:2.460,ads_E:0.278", "no_equ_3": "ratio:0.94,dipole:-0.431,distance:2.731,ads_E:0.139", "no_equ_4": "ratio:0.96,dipole:-0.291,distance:3.002,ads_E:0.057", "no_equ_5": "ratio:0.98,dipole:-0.177,distance:3.274,ads_E:0.014", "no_equ_6": "ratio:1,dipole:-0.100,distance:3.545,ads_E:-0.007", "no_equ_7": "ratio:1.02,dipole:-0.049,distance:3.817,ads_E:-0.015", "no_equ_8": "ratio:1.04,dipole:-0.018,distance:4.088,ads_E:-0.017", "no_equ_9": "ratio:1.06,dipole:-0.003,distance:4.359,ads_E:-0.016", "no_equ_10": "ratio:1.08,dipole:0.005,distance:4.631,ads_E:-0.014", "no_equ_11": "ratio:1.1,dipole:0.008,distance:4.902,ads_E:-0.012", "no_equ_12": "ratio:1.12,dipole:0.009,distance:5.173,ads_E:-0.010", "no_equ_13": "ratio:1.14,dipole:0.008,distance:5.445,ads_E:-0.009", "no_equ_14": "ratio:1.16,dipole:0.006,distance:5.716,ads_E:-0.008", "no_equ_15": "ratio:1.18,dipole:0.006,distance:5.987,ads_E:-0.007", "no_equ_16": "ratio:1.2,dipole:0.005,distance:6.259,ads_E:-0.006", "no_equ_17": "ratio:1.22,dipole:0.004,distance:6.530,ads_E:-0.006", "no_equ_18": "ratio:1.24,dipole:0.002,distance:6.801,ads_E:-0.005", "no_equ_19": "ratio:1.26,dipole:0.002,distance:7.073,ads_E:-0.005", "no_equ_20": "ratio:1.28,dipole:0.001,distance:7.344,ads_E:-0.005", "no_equ_21": "ratio:1.3,dipole:0.002,distance:7.615,ads_E:-0.005", "no_equ_22": "ratio:1.32,dipole:0.002,distance:7.887,ads_E:-0.005", "no_equ_23": "ratio:1.34,dipole:0.001,distance:8.158,ads_E:-0.005", "no_equ_24": "ratio:1.36,dipole:0.001,distance:8.429,ads_E:-0.005", "no_equ_25": "ratio:1.38,dipole:0.000,distance:8.701,ads_E:-0.005", "no_equ_26": "ratio:1.4,dipole:0.000,distance:8.972,ads_E:-0.005", "no_equ_27": "ratio:1.42,dipole:0.000,distance:9.243,ads_E:-0.005", "no_equ_28": "ratio:1.44,dipole:0.000,distance:9.515,ads_E:-0.005", "no_equ_29": "ratio:1.46,dipole:0.000,distance:9.786,ads_E:-0.005", "no_equ_30": "ratio:1.48,dipole:0.000,distance:10.057,ads_E:-0.005", "no_equ_31": "ratio:1.5,dipole:0.000,distance:10.329,ads_E:-0.005"}{}7?}W?3s7@ ^@/